The GRE maths sample Quantitative Comparison question given below is from the topic number properties. It tests the concept of Prime Factorisation of numbers and Irrational Numbers.
Question 5
Quantity A | Quantity B |
---|---|
\\sqrt{\frac{143}{208}}) × \\sqrt{\frac{169}{77}}) | \\sqrt{\frac{459}{306}}) × \\sqrt{\frac{224}{675}}) |
Quantity A: \\sqrt{\frac{143}{208}}) × \\sqrt{\frac{169}{77}})
Prime Factorizing the numerator and the denominator of each term,
\\sqrt{\frac{143}{208}}) × \\sqrt{\frac{169}{77}}) = \\sqrt{\frac{11 \times 13}{13 \times 2^{4}}}) × \\sqrt{\frac{13 \times 13}{7 \times 11}})
→ \\sqrt{\frac{11 \times 13 \times 13 \times 13}{13 \times 2^{4} \times 7 \times 11}})
→ \\frac{13}{4 \sqrt{7}})
Quantity B: \\sqrt{\frac{459}{306}}) × \\sqrt{\frac{224}{675}})
Prime Factorizing the numerator and the denominator of each term,
\\sqrt{\frac{459}{306}}) × \\sqrt{\frac{224}{675}}) = \\sqrt{\frac{17 \times 3^{3}}{2 \times 3^{2} \times 17}}) × \\sqrt{\frac{2^{5} \times 7}{3^{3} \times 5^{2}}})
→ \\sqrt{\frac{3 \times 2^{5} \times 7}{2 \times 3^{3} \times 5^{2}}})
→ \\frac{4 \sqrt{7}}{15})
Quantity A: \\frac{13}{4 \sqrt{7}}) is greater than 1 since numerator is greater than the denominator.
Quantity B: \\frac{4 \sqrt{7}}{15}) is lesser than 1 since numerator is lesser than the denominator.
Quantity A > Quantity B
Register in 2 easy steps and
Start learning in 5 minutes!
Copyrights © 2016 - 24 All Rights Reserved by Wizako.com - An Ascent Education Initiative.
Privacy Policy | Terms & Conditions
GMAT® is a registered trademark of the Graduate Management Admission Council (GMAC). This website is not endorsed or approved by GMAC.
GRE® is a registered trademarks of Educational Testing Service (ETS). This website is not endorsed or approved by ETS.
SAT® is a registered trademark of the College Board, which was not involved in the production of, and does not endorse this product.
Mobile: (91) 93800 48484
WhatsApp: WhatsApp Now
Email: learn@wizako.com
Leave A Message