GRE® Quantitative Comparison | Algebra Q3

GRE Sample Questions | Polynomial Comparison

The GRE maths sample question given below is a Quantitative comparison problem in Algebra.

Question 3 : x, y ≠ 0 and x > y

Quantity A Quantity B
\\frac{1}{\frac{x}{y} + \frac{y}{x}}) \\frac{1}{\frac{x}{y} - \frac{y}{x}})

  1. Quantity A is greater
  2. Quantity B is greater
  3. The two quantities are equal
  4. Cannot be determined

Get to 170 in GRE Quant


Online GRE Courses
From INR 2999


Video Explanation


GRE Live Online Classes


Starts Fri, Dec 6, 2024


Explanatory Answer

Step 1 of solving this GRE Algebra Question: Evaluate both the quantities

Quantity A: \\frac{1}{\frac{x}{y} + \frac{y}{x}}) = \\frac{1}{\frac{x^2 + y^2}{xy}})

= \\frac{xy}{x^2 + y^2})

Quantity B: \\frac{1}{\frac{x}{y} - \frac{y}{x}}) = \\frac{1}{\frac{x^2 - y^2}{xy}})

= \\frac{xy}{x^2 - y^2})


Step 2 of solving this GRE Algebra Question: Compare Using Counter Examples

Example: x = 4, y = 2; x > y

Quantity A: \\frac{xy}{x^2 + y^2}) = \\frac{4 × 2}{4^2 + 5^2}) = \\frac{8}{20})

Quantity B: \\frac{xy}{x^2 - y^2}) = \\frac{4 × 2}{4^2 - 5^2}) = \\frac{8}{12})

Quantity B > Quantity A

Counter Example: x = 4, y = −2; x > y

Quantity A: \\frac{xy}{\text{x^2 + y^2})}) = \\frac{4 × (-2)}{4^2 + (-2)^2}) = \\frac{-8}{20})

Quantity B: \\frac{xy}{x^2 - y^2}) = \\frac{4 × (-2)}{4^2 - (-2)^2}) = \\frac{-8}{12})

Quantity A > Quantity B

A Counter Example exists. Therefore, we will not be able to deduce which of the two quantities is greater.

Choice D is the correct answer



GRE Online Course - Quant
Try it free!

Register in 2 easy steps and
Start learning in 5 minutes!

★ Sign up

Already have an Account?

★ Login

GRE Live Online Classes

Next Batch Nov 15, 2024

★ GRE Live Info

GRE Online Preparation | GRE Algebra Videos On YouTube

Additional Practice Questions in Algebra

GRE Questionbank | Topicwise GRE Sample Questions


Work @ Wizako

How to reach Wizako?

Mobile: (91) 93800 48484
WhatsApp: WhatsApp Now
Email: learn@wizako.com
Leave A Message