GMAT Hard Maths Question | GMAT Algebra

GMAT Sample Questions | Linear Equations Word Problem

This is a very interesting GMAT sample question in algebra - linear equations word problem - and number properties and is about finding number of possible values an unknown can take, given one linear equation in two variables. Uses elementary number properties concept along with concepts of solving a system of linear equations in two variables. Such questions are spotted every now and then in the GMAT problem solving section. A 700 level GMAT linear equations problem.

Question 6: A children's gift store sells gift certificates in denominations of $3 and $5. The store sold 'm' $3 certificates and 'n' $5 certificates worth $93 on a Saturday afternoon. If 'm' and 'n' are natural numbers, how many different values can 'm' take?

  1. 5
  2. 7
  3. 6
  4. 31
  5. 18

Get to Q51 in GMAT Quant

Online GMAT Course
@ INR 3000

Video Explanation

GMAT Live Online Classes

Start Thu, Dec 3, 2020

Explanatory Answer

Step 1 of solving this GMAT Linear Equation Question: Understand Key Data
  1. Total value of all certificates sold = $93.
  2. Certificates sold were in denominations of $3 and $5.
  3. Both 'm' and 'n' are natural numbers.
Approach to solve this GMAT Algebra Word Problem

The value of all certificates sold, 93 is divisible by 3.
So, a maximum of 31 $3 certificates and no $5 certificates could have been sold.
However, the question states that both 'm' and 'n' are natural numbers.
Hence, at least 1 $5 certificate should have been sold.

Let us reduce the number of $3 certificates from theoretical maximum count of 31 by say 'x' and correspondingly increase $5 certificates by 'y'.
Evidently, 3x = 5y because the value of $3 certificates reduced should be the same as the value of $5 certificates increased.

It means that x has to be a multiple of 5 and y has to be a multiple of 3.
Or $3 certificates reduce in steps of 5 certificates.

Step 2 of solving this GMAT Algebra Question: List down possible values for 'm' and 'n'

The following combinations are possible.

  1. m = 26, n = 3
  2. m = 21, n = 6
  3. m = 16, n = 9
  4. m = 11, n = 12
  5. m = 6, n = 15
  6. m = 1, n = 18

The question is "How many different values can 'm' take?"
Hence, m can take 6 values.

Choice C is the correct answer.

An alternative way to think of the same concept - Replacing five $3 certificates with three $5 certificates leads to no change in the overall value of certficates sold and gives us a new combination each time. We need to see how many such combinations are possible.


GMAT Online Course - Quant
Try it free!

Register in 2 easy steps and
Start learning in 5 minutes!

★ Sign up for Free

Already have an Account?

★ Login to Continue

GMAT Live Online Classes

Next Batch Dec 3, 2020

★ GMAT Live Info

GMAT Coaching in Chennai

Next Integrated (Online + Offline) Batch
Starts Thu, Dec 3, 2020

★ GMAT Class Info

GMAT Coaching in Chennai

Sign up for a Free Demo of our GMAT Classes in Chennai

★ Schedule Demo

GMAT Preparation Online | GMAT Algebra Videos On YouTube

Other useful sources for Algebra Question | Linear Equations and Quadratic Equations Sample Questions

GMAT Sample Questions | Topicwise GMAT Questions

Where is Wizako located?

Wizako - GMAT, GRE, SAT Prep
An Ascent Education Initiative
48/1 Ramagiri Nagar
Velachery Taramani Link Road.,
Velachery, Chennai 600 042. India

How to reach Wizako?

Phone: (91) 44 4500 8484
Mobile: (91) 95000 48484
WhatsApp: WhatsApp Now
Leave A Message